RapidChain: Scaling Blockchain via Full Sharding

Jinghui Liao
Outlines

• Background
• Protocol
• Evaluation
• Conclusion
Background

⚠️ POW and/or POS

- Low transaction throughput
- High latency
- Poor energy efficiency
- Centralization

- Committee-Based Consensus
 - Introduced to reduce the complexity of Byzantine agreement
 - Fully connected networks with only a sublinear per-node overhead
 - Only theoretically, not practically
Background

• Algorand
 • Randomly select committee members by balance
 • Refresh committee for every consensus
 • Insecure randomness

• Sharding-based Consensus
 • RSCoin
 • Elastico
 • OmniLedger

• Synchronous Consensus

• Information Dispersal Algorithms
Protocol

- Bootstrapping
- Consensus
- Reconfiguration
BootsTrapping

• Root group.
 • Running committee election protocol to select a root group.

• Reference Committee
 • Root group generating a sequence of random bits to establish a reference committee

• Establish Committees
 • Reference committee are responsible to create committees
Consensus

• Gossip
 • Divides M into k chunks M1 M2 M3....Mk
 • Give chunks to neighbors equally
 • Message should be able to be reconstructed

• Remarks Synchronous Consensus
 • Run on small number of nodes
 • Size of message to agree is small
 • Latency of each round of consensus is also small
 • High resiliency (1/2)
Consensus

- Cross-Shard Transaction
 - Each tx has a unique identity
 - If the input is unspent
 - If the sum of outputs is less than the inputs
 - Transactions are partitioned based on tx id.
 - No proof attached to tx
 - On cross shard transaction will be split into 3
Reconfiguration

- Offline PoW
 - Rely on Pow to protect against Sybil
 - Reference committee is responsible to verify PoW result

- Randomness Generation
 - Reference Committee run a Distributed random generation protocol

- Cukoo Rule
 - Randomly assign new node
 - Assign a number of members in the committee to another committee
Evaluation

- Committee Size
Evaluation

• Storage

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Network Size</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastico [47]</td>
<td>1,600 nodes</td>
<td>2,400 MB (estimated)</td>
</tr>
<tr>
<td>OmniLedger [42]</td>
<td>1,800 nodes</td>
<td>750 MB (estimated)</td>
</tr>
<tr>
<td>RapidChain</td>
<td>1,800 nodes</td>
<td>267 MB</td>
</tr>
<tr>
<td>RapidChain</td>
<td>4,000 nodes</td>
<td>154 MB</td>
</tr>
</tbody>
</table>
Conclusion

• 1/3 resilient sharding-based blockchain protocol
• Highly scalable
• Committee based network and storage
• Scales smoothly to the size up to 4000 nodes
Thank you!