VC3: Trustworthy Data Analytics in the Cloud using SGX

Felix Schuster*, Manuel Costa, Cedric Fournet, Christos Gkantsidis
Marcus Peinado, Gloria Mainar-Ruiz, Mark Russinovich
Microsoft Research
Outline

• Introduction
• Background
• Design Overview
• Job Deployment
• Job Execution and Verification
• Regional Self-Integrity
• Implementation
• Evaluation
• Related Work
• Conclusion
Introduction

• Cloud providers allow computers into data centers and make them available on-demand
• Users have the ability to rent out computing capacity to run large-scale distributed computations based on frameworks like MapReduce
• A major concern for users is the ability to trust the cloud provider with their code and data
Introduction (cont’d)

• Concerns:
 • Single malicious insider with admin access in the cloud can leak or manipulate sensitive user data
 • External attackers attempt to access data (e.g. exploit vulnerabilities in an OS)
 • External attackers may tamper with users’ computations

• Cloud User Expectations
 • Confidentiality and integrity for both code and data
 • Verifiability of execution of the code over data

• Multiparty computation techniques may address these demands using **Fully Homomorphic Encryption** (FHE)
 • However, FHE is not efficient for most computations
Introduction (cont’d)

• **Verifiable Confidential Cloud Computing (VC3)**
 • A system that allows users to run MapReduce computations in the cloud while keeping their code and data secret and ensuring correctness and completeness of their results

• **Threat Model**
 • Powerful attackers that may have the ability to control the whole cloud providers software and hardware infrastructure

• **Tools Used**
 • Trusted SGX processors
 • Ran an unmodified Hadoop
Introduction (cont’d)

• Challenges:
 • Partition the system into trusted and untrusted parts to minimize its TCB
 • Guarantee integrity for the whole distributed computation
 • Protect the code running in the isolated memory regions from attacks due to unsafe memory accesses
Background

• MapReduce
 • A popular programming model for processing large data sets: users write map and reduce functions, and execution of functions is automatically parallelized and distributed

• Intel SGX
 • Set of x86-64 ISA extensions
 • Sets up protected execution environments (called enclaves) without requiring trust in anything but processor and code put in the enclaves
Adversary Model

• Aware of external attackers that may try to control the entire software stack in a cloud provider’s infrastructure, including the hypervisor and OS
• Assume the attacker is unable to physically open and manipulate tat least the SGX-enabled processor packages
Design Overview

• **Goal:** Maintain confidentiality and integrity of code and data
• Researchers designed VC3 to achieve good performance and keep large software components out of the TCB
• VC3 allows users to implement MapReduce jobs by writing, testing, and debugging map and reduce functions
• When map and reduce functions are ready for production, users compile and encrypt the code, and obtain a private enclave E- code
• In the cloud, enclaves containing E- and E+ are initialized and l
Design Overview
Job Deployment

• After the deployment of a users code to the cloud, cryptographic protocols are exchanged and the actual MapReduce job execution starts

• Cloud Attestation
 • SGX remote attestation for enclaves is achieved through quotes issued by QE
 • Threat model excludes physical attacks, to defend against such attacks, they used an additional Cloud QE
 • Cloud QE was created by the cloud provider when a new SGX-enabled system is created
Job Deployment

• Key Exchange
 • To execute MapReduce jobs, enclaves need to get keys to decrypt the results
 • Researchers created their own key exchange protocol which is designed to implement a conventional MapReduce job that works with Hadoop
Job Execution & Verification

• Key exchanges and encryption code will help code and data be safe from attacks

• Researchers have to encrypt data in a MapReduce job and this capability needs to work within Hadoop
Region Self-Integrity

• Final aspect of design is to enforce a region of self-integrity for user code loaded into enclaves
• Establish efficient communication channels
 • Leads to a broaden attack surface on enclaves
• Two solutions:
 • Region-write-integrity
 • Region-read-write-integrity
• Several Attack Scenarios:
 • Information Leakage
 • One basic principle of MapReduce is that key-value pairs with the same key need to be processed by the same reducer
 • A network attacker can count the number of pairs being delivered and change the pairs
 • Replay Attacks
 • Attackers can try to fully or partially replay a past MapReduce job
Implementation

• VC3 was implemented using C++ for Windows 64-bit and HDInsight distribution of Hadoop

• SGX Emulation
 • Researchers implemented VC3 in an SGX Emulator which was successful
 • As well, created their own emulator, however the emulator does not provide security guarantees
Evaluation

- Researchers chose a mix of real-world applications and benchmarks to evaluate the VC3 system
- The following table shows the applications used to evaluate VC3

<table>
<thead>
<tr>
<th>Application</th>
<th>LLOC</th>
<th>Size input</th>
<th>Size E_{vc3}</th>
<th>map tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserUsage</td>
<td>224</td>
<td>41 GB</td>
<td>18 KB</td>
<td>665</td>
</tr>
<tr>
<td>IoVolumes</td>
<td>241</td>
<td>94 GB</td>
<td>16 KB</td>
<td>1530</td>
</tr>
<tr>
<td>Options</td>
<td>6098</td>
<td>1.4 MB</td>
<td>42 KB</td>
<td>96</td>
</tr>
<tr>
<td>WordCount</td>
<td>103</td>
<td>10 GB</td>
<td>18 KB</td>
<td>162</td>
</tr>
<tr>
<td>Pi</td>
<td>88</td>
<td>8.8 MB</td>
<td>15 KB</td>
<td>16</td>
</tr>
<tr>
<td>Revenue</td>
<td>96</td>
<td>70 GB</td>
<td>16 KB</td>
<td>256</td>
</tr>
<tr>
<td>KeySearch</td>
<td>125</td>
<td>1.4 MB</td>
<td>12 KB</td>
<td>96</td>
</tr>
</tbody>
</table>

TABLE I: Applications used to evaluate VC3.
Conclusion

- VC3 created as an approach for the verifiable and confidential execution of MapReduce jobs in untrusted cloud environments
- VC3 is able to be successful implemented and has strong security guarantees
- VC3 is able to achieve secure cloud computations