Exposing Congestion Attack on Emerging Connected Vehicle based Traffic Signal Control

Qi Alfred Chen, Yucheng Yin, Yiheng Feng, Z. Morley Mao, Henry X. Liu

Presented by Sezana Fahmida
Outline

• Introduction
• Background
• Threat Model
• Analysis Overview
• Data Spoofing Strategies
• Congestion Attack Analysis
• Exploit Construction
• Evaluation
• Defense Strategy
Introduction

- Connected Vehicle (CV) technologies to transform the transportation system
- Vehicles and infrastructures are connected through wireless
- USDOT launched CV pilot program in September, 2016
- Under testing in three cities including NYC
- Aims to reduce traffic congestion
- Opens new doors for cyber attack!
Connected Vehicles
Introduction

• This paper: Security analysis on CV-based transportation systems
• Target system: Intelligent Traffic Signal System (I-SIG)
• Used for traffic signal control
• Fully implemented and tested on real road intersections
• Achieved 26.6% reduction in total vehicle delay
• Authors aim: identification of fundamental security challenges
• Main focus on problems in signal control algorithm
• Design and implementation choices
Background

• CV technologies
• DSRC: Dedicated Short Range Communications protocol
• Dedicated Band allocated by FCC
• Vehicle to Vehicle (V2V) or Vehicle to Infrastructure (V2I) communications
• OBU (On Board Unit) & RSU (Road Side Unit)
• Vehicles use OBUs to broadcast basic safety messages (BSM)
• Equipped vehicles: with OBU
• Unequipped vehicles: without OBU
• Security and Credential management system (SCMS)
Background

- The I-SIG system
- Real time vehicle data leveraged for better traffic control
- Traffic Signals: Phases
- Operates on RSU
Background

- Configured with min and max green light time ($t_{g_{\text{min}}}, t_{g_{\text{max}}}, t_y, t_r$)
- Signal Plan: setting t_g and phase sequence
 - $t_{g_{\text{min}}} \leq t_g \leq t_{g_{\text{max}}}$
- 2 phase sequences Ring 1 and 2
- Phases in same ring conflict
- Planned sequentially
- Broken down to stages
- Phases in former stage conflict with latter stage
- Stages are planned as a whole
Background

• Delay time: time to pass the intersection – free flow travel time
• Goal is to reduce the delay time for all vehicles
• Controlled Optimization of Phases (COP)
• Input: Estimated Arrival Time (to reach the stop bar)
• Uses DP to calculate optimal signal plan
• Releasing time based on queue length
• Delay = releasing time – arrival time
• If no vehicle, skips the phase

Fig. 4: The I-SIG system design.
Background

- Original Design: Unlimited stages to serve all vehicles
- I-SIG uses only two stages
- Only applies planned signal duration for the first stage, can not change order
- Can change duration and order of phases in second stage
- Limit in planning stages due to timing and resource constraints
- Finds plans with least unserved vehicles and chooses one with least delay
Background

• COP works if equipped devices >95%
• Need at least 25-30 years to achieve 95% CV
• Transition Period: EVLS algorithm
• Estimation of Location and Speed
• Data from equipped devices used to estimate data for unequipped devices
Threat Model

• Attack from vehicle side devices
• Malicious BSM messages with spoofed data
• Assumption: BSM messages are signed but data is spoofed
• Only one attack vehicle present in intersection
• Limited computation power for the attacker
• Signal control algorithm choices, configurations and intersection maps are known to the attacker
• Can receive BSM messages and can execute COP and EVLS
Analysis methodology

• Attack goal: Create congestion
• Data spoofing strategy identification
• Vulnerability Analysis for each attack goal
• Cause analysis and practical exploit construction
• Evaluation using simulations with real world intersection settings
Data spoofing strategy

- Attack input Data flow
Arrival Table

• 2D array (the estimated arrival time and phases)
• Element $\ (i,j)$-> number of vehicles for arrival time i at phase j
• First row: vehicles with zero arrival time
• COP uses arrival table to change the compute optimal total delay
• Attack goal: Change value in arrival table by spoofing
Transition Period

• Percentage of equipped vehicles -> PR
• PR <95% : transition period
• EVLS algorithm used to estimate unequipped devices
• three regions: (1) queuing region, including vehicles waiting in the queue with zero speed,
• slowdown region : vehicles slowing down because of the front vehicles
• free-flow region, vehicles away from the queue
• Estimates the number of vehicles in queue by dividing the length of the queuing region by the sum of the vehicle length and headway in queue
Spoofing Strategies

• Arrival Time and phase spoofing for both full deployment and transition periods
 • Set location and speed in BSM messages to increase value \((i,j)\) in arrival table

• Queue length manipulation for the transition period only
 • Set the location of the farthest stopped vehicle by a BSM message
Congestion Attack Analysis

- Using standard configuration value and generic intersection VISSIM used to generate vehicles
- Snapshots are after running I-SIG
- PR levels 25%, 50% and 75% is used
- All data spoofing options are tried
- For each data spoofing trial, a new vehicle trajectory data entry with spoofed data is added to the traffic snapshot as attack input
- Attack effectiveness measured by total delay of all vehicles in the snapshot
Congestion Attack Analysis

<table>
<thead>
<tr>
<th>CV deployment</th>
<th>Full deployment</th>
<th>Transition period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100% PR</td>
<td>75% PR</td>
</tr>
<tr>
<td>COP config.</td>
<td>2-S</td>
<td>5-S</td>
</tr>
<tr>
<td>Strategy</td>
<td>S1</td>
<td>S1</td>
</tr>
</tbody>
</table>

Vulnerability analysis (exhaustively try all data spoofing options)

<table>
<thead>
<tr>
<th></th>
<th>100% PR</th>
<th>75% PR</th>
<th>50% PR</th>
<th>25% PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success %</td>
<td>99.9%</td>
<td>96.4%</td>
<td>99.1%</td>
<td>98.3%</td>
</tr>
<tr>
<td>Ave. delay</td>
<td>1078.7</td>
<td>162.7</td>
<td>982.2</td>
<td>536.3</td>
</tr>
<tr>
<td>inc. (s) & %</td>
<td>68.1%</td>
<td>11.5%</td>
<td>60.2%</td>
<td>32.7%</td>
</tr>
</tbody>
</table>

Practical exploit (strategically try data spoofing options due to attack decision time limits in practice)

<table>
<thead>
<tr>
<th></th>
<th>100% PR</th>
<th>75% PR</th>
<th>50% PR</th>
<th>25% PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. trial #</td>
<td>3.8</td>
<td>13.3</td>
<td>3.8</td>
<td>N/A</td>
</tr>
<tr>
<td>Success %</td>
<td>99.8%</td>
<td>84.7%</td>
<td>99.1%</td>
<td>N/A</td>
</tr>
<tr>
<td>Ave. delay</td>
<td>1077.4</td>
<td>119.8</td>
<td>1057.1</td>
<td>N/A</td>
</tr>
<tr>
<td>inc. (s) & %</td>
<td>68.0%</td>
<td>9.3%</td>
<td>60.0%</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Congestion Attack Analysis

• Full deployment period
• Strategy 1 (increasing arrival table entry value) increases total delay for 99.9% snapshots with 68.1% delay increase
• Cause: last vehicle advantage
• Most successful attack trial added a spoofed vehicle with very late arrival time
• Results in higher green light end time for requested phase
• Causes delay for all phases after it!!
Congestion Attack Analysis

- Last vehicle advantage
Congestion Attack Analysis

- COP should just give up serving this very late vehicle
- Root cause lies in planning stage limitation
- In two stage planning, each phase can only be planned once
- COP tries to serve all vehicles at once, resulting in late vehicle advantage
- Trade off between security and deployability.
- Planning has to finish within 5-7 seconds
- RSU devices have limited computation power
- Adding more stages increases planning time
Congestion Attack Analysis
Congestion Attack Analysis

• Same attack strategy with Five-stage Planning is less effective
• Attacks cause 11.5% delay
• two types of effective spoofing trials
• Open a skipped phase
• Extend the green light end time.
• set the spoofed vehicle arrival time to a few seconds after the original green light end time for a phase
• COP extends the green light time to serve this vehicle (<4seconds)
Congestion Attack Analysis

- Transition Period
- Both S1 and S2 are tried
- Two stage planning: Late vehicle advantage is seen
- Five stage planning S2 dominates
- Best attack trial: for a certain phase, add the most non-existing unequipped vehicles.
- i.e., adding a farthest stopped vehicle using S2
Exploit Construction

• Real-time attack requirement
• Enumerating all data spoofing attacks takes time (>8 minutes)
• Attack decision has to be made faster
• Budget-based attack decision
• When phase in the current stage turns yellow, attacker waits for 1 second & triggers the decision process
• $t_y + t_r$ is 6 seconds
• Decision time is 5 seconds
Exploit Construction

- Budget based data spoofing trial strategies
- E1: Congestion Attack for two stage planning
 - Late vehicle advantage
- E2: Congestion Attack for five stage planning in Full deployment
 - Opens skipped phases
 - Increase green light time
- Congestion Attack for five stage planning in Transition Period
 - Non-existing queuing of unequipped vehicles
Evaluation

- E1 achieves 46.2% delay increase
- E2 is less effective as it is dependent on traffic conditions
- E3 is most effective (193.3% delay increase)
Evaluation

• The lane blocking effect
• In five stage planning continuous attack accumulates attack effect
• Delayed planning of attack vehicles causes more delays
• Can block entire approach
• Queues in the left-turn lane start to spill over to the through lanes and block the through lane.
• Through lane to start queuing after the spilled-over left-turn vehicles
• COP assigns minimum green light to left turn lane to clear the thorough lane
Evaluation

Left-turn lane spills over and blocks the entire approach

The spillover starts and blocks one through lane
Defense Strategies

• Robust algorithm design for the transition period
• Performance improvement for RSUs
• Data spoofing detection using infrastructure-controlled sensors
THANK YOU!!!